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On the Yang-Lee distribution in the C plane 

John S N Elvey 
Mathematics Department, Bedford College, London NWl, UK 

Received 26 March 1974 

Abstract. An earlier result obtained by Elvey giving the Yang-Lee distribution in the 
plane for onedimensional continuum systems of particles with hard cores and nearest- 
neighbour 'rational step potentials' is here extended to general nearest-neighbour potentials. 

1. Introduction 

Let a('), denote the Yang-Lee (1952) distribution in the z plane and j? plane, 
respectively, each distribution arising from the family { G(P, z ,  L)} of grand partition 
functions at inverse temperature j?, fugacity z, and length L. Using the inversion integral 
for Laplace transforms, it was shown in Penrose and Elvey (1968) that n(*) may be 
determined uniquely as a system of analytic arcs for one-dimensional continuum 
systems with potential given by: 

O < r < b  

44 = W), b < r < 2 b  (11 1;" 2 b < r  

where 4 is real and of bounded variation. This result did not extend to though it 
was implied by the arguments of Penrose and Elvey (1968) that nca) was contained in a 
system of arcs. 

In a subsequent note (Elvey 1973) it was shown that ncs) coincides with this system 
of arcs provided that 4 is a finite sum of rational step functions. In the present work the 
result for is extended to general nearest-neighbour potentials, using a method? 
(cf Elvey 1974) introduced to obtain similar results for lattice gases. 

2. Statement of results 

Consider a classical system of particles with potential given by (l), moving on a line of 
length L and having grand partition function G(B, z ,  L). Since f l  is the variable of interest 
here, dependence of G on z will not usually be shown from now on. As in Penrose and 
Elvey (1968), the equation of state (at positive values of B and z )  may be used to obtain a 
complete analytic function (eg Saks and Zygmund 1965), say P, with branches 
p, (B) ,  . . . , p,(B).  . . at any point B E C, z having a fixed (possibly complex) value, zo . 

t The basic idea (use of a corollary of Vitali's convergence theorem in an indirect proof that R = S) was 
suggested to me (Elvey 1974) by an (anonymous) referee-to whom I am grateful. 
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Moreover, P is determined from the relation (d Penrose and Elvey 1968, lemma 1 with 
/3 and z interchanged ; also Elvey 1973) : 

where 

In the sequel it will be shown that R coincides with a set, say S, defined as follows (cf 
Elvey 1974,$4) : S = S1 U S2, where 

S1 
S2 

{/I E C : P has a branch point of largest real part at p> ; 
{/3 E C : P  has no branchpoint of largest real part but at least two branches of 

largest real part at 8). 
In these terms, the proof will be accomplished through two propositions, namely : 

Proposition A 
(1) s1 = 3 2  
(2) S is closed 
(3) n c s 
Proposition B 
(1 )  S contains no domain 
(2) s 3 R. 

In view of the close correspondence of this scheme of proof (and some of the details) 
with the work of Elvey (1974) and parts of Penrose and Elvey (1968) and Elvey (1973), 
only brief indications and references to corresponding proofs in the earlier papers will 
be given (except in the proof of proposition B(2)). 

3. Outline of the proof 

For any PE@,  P has only a finite number (depending on 8) of branches of equal 
real part ; and hence, only a finite number (say v(p)) of branches of largest real part (cf 
Penrose and Elvey 1968,$3). Consequently: 

If b o ~ S l  and v(fi0) = vo then there is a deleted neighbourhood of bo on which 
each pr has an expansion of form : 

m 

pr(B) = WO + 1 brs[(B - /30)1’v01s 
s = l  

where ( / 3 - / 3 0 ) ” v o  takes the same value for all s and, for 1 < r < y o ,  p,(po) 
largest real part?. It follows that exp(pr) has a similar expansion : 

wo has 

00 

exp(pr(P)) = exp(w0) + 1 Brs[(B - /30)1’v01s 
s= 1 

t Compared with all other branches of P. 
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and that the functions exp(p,) have co-maximal moduli on a deleted neighbourhood of 
P o .  By applying the maximum modulus theorem to the functions F,, g ig . ,  for 
1 < m < n < v o ,  where 

on the closure of a suitable neighbourhood of the origin, one concludes (cf Elvey 1974, p 
105) that every neighbourhood of flo E S ,  contains a point of S , ;  which proves A(1). 

To prove A(2), it suffices to use the defining properties of S to show that C\S is 
open ; and this is an immediate consequence of the basic property that all branches of P 
are everywhere continuous. The deduction of 4 3 )  is now most simply effected by showing 
that fl E C\S 3 f l  E C\R, as in Penrose and Elvey (1968,§ 4) with the roles of fl and z 
interchanged. To prove B(1), one may use the method of Penrose and Elvey (1968,g 3) 
(again with fl and z interchanged) to show that a necessary condition for S ,  to contain a 
domain is that $ ( p )  = $(p-io) for some real constant o and all p.  The definition of $ 
shows, however, that this condition is violated. Since S ,  comprises branch points (of 
largest real part) it consists of isolated points; and in view of proposition A(1), that is: 
S, c S , ,  it follows that S contains no domain and, moreover, that S has no isolated 
points. 

Note that the proofs that S consists of analytic arcs, and that C\S is simply- 
connected follow at once from the arguments of Penrose and Elvey (1968, theorem 2), 
with f l  and z interchanged. Hence we may assume in the rest of the present proof that S ,  
consists of arcs. 

Since it is mainly in proving B(2) that the methods of Penrose and Elvey (1968) 
and Elvey (1973) break down (because, even when L is finite, G(fl,L) has in general 
infinitely many zeros in the fl plane) for general nearest-neighbour potentials, we give 
this proof in more detail, though it closely parallels that of Elvey (1974, proposition 3). 

Since S is closed (by A(2)) and SZ is closed (by the definition of 'limit points of zeros') 
it is enough, in view of A( I), to show that R =I S ,  . To this end, suppose not ; and let 
Bo E S2 \R. Then it follows that there is a neighbourhood, say N(flo), on which G(6, L) 
does not vanish for all sufficiently large L ; so that a definite, regular branch of [G(fl, L)3'lL 
may be defined on M(flo). Since 4 is of bounded variation, it must also be bounded 
below : 

Inf{+(r):b < r < 2b) 6 

where 6 is a finite real number. Consequently, outside the hard cores, the total potential 
energy per particle is uniformly bounded below : 

4(xk-x j )  2 -(m-1)161. 
l b j < k b m  

It follows that 

for all possible (ordered) configurations of the m particles on [0, L]. (This is, of course, 
just a simple example of the general 'stability condition'; see, eg Ruelle 1969). Thus we 
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have at once (with z = zo ) :  

< exp{lzolexp{lblmax[ReB:B~9]}) 
which gives a uniform bound for IC(/?, L)I1lL over any compact subset, 9, of N(B0). 

From the uniformly bounded family of analytic functions 

{ [G(B ,L) ] ’ /L :L  > A,  BE^} 
where A is any sufficiently large number, one can, by a corollary (eg Titchmarsh 1939, 
p 169) of the Vitali convergence theorem, extract a uniformly convergent subsequence, say 
{ [G(B, & ) ] ‘ I L k } ,  whose limit function, say g, is therefore regular on 9. Since S contains no 
domain (by B(l)), one may, without loss of generality, suppose that [G(B’, Lk)]’ILk tends to 
exp[p,(B‘)] when k + CO and p’ E 9 \ S .  This being so for all such p’, we conclude that g 
coincides with exp(p,) on 9. On the other hand, by hypothesis, 9 contains points of 
S , ;  and if p” is such a point then at p”, p1 is not the unique branch of largest real part, 
making it impossible for [G(p”, Lk)] l iLk  to tend to  exp[pl(p”)]. This contradiction proves 
proposition B(2). 

Finally, since R c S and S c R, we deduce that R coincides with S, as originally 
asserted. 

4. Remarks 

It appears that the scheme of proof outlined here could be used for very general (stable) 
potentials-even in two or three dimensions-provided only that adequate information 
about the poles of the complete analytic function generated by the equation of state was 
obtainable. This seems to me to be the most promising approach to the problem of 
determining the Yang-Lee distribution for general systems. 

One loss in the present method of proof (as compared with that of Penrose and Elvey 
1968 and Elvey 1973) is that no formula can be derived for the density of limit points of 
zeros (at least, not as a direct consequence of the proof given here); but this loss is 
balanced by the greater generality of the indirect proof. 
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